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Abstract. O n  the basis of the partition theorem and the embedding ideas of Inglesfield, we 
develop a methodology to study the electronic structure of random systems. The equations 
for the Green functions are confined to a finite-cluster region and the influence of the rest 
of the region appears as a surface potential. The herglotz properties are satisfied in the 
approximation. We illustrate the methodology by applying it to a binary distribution of 
spherically symmetric wells in a coherent jellium. This is the alloy generalisation of the 
impurity work of Inglesfield referred to in the text. 

1. Introduction 

One of the most powerful techniques available these days to study the electronic structure 
of random alloys is the coherent potential approximation (CPA). The scheme has been 
extensively applied in both the tight-binding and the Korringa-Kohn-Rostoker (KKK) 
scattering approaches. Increasingly, as one wants to make realistic. quantitative cal- 
culations, it is being felt that the single-site or singlc-muffin-tin approximation appears 
to be inadequate in a large class of systems. The effects of clustering, short-range order, 
lattice relaxation and similar local environmental effects need to be effectively tackled. 
Self-consistent analyticity-preserving cluster CPAS have been proposed, in both the tight- 
binding (Mookerjee 1973, Kumar et a1 1982, Gray and Kaplan 1976a, b) and the KKR 
approaches (Gonis er a1 1984, Mookerjee 1987). In this paper, we wish to propose an 
approach for developing a CPA encompassing both single-potential wells and clusters of 
wells. The methodology is an extension to random systems of the embedding technique 
introduced by Inglesfield (1971,1972,1981) for impurities and surfaces. 

Inglesfield’s idea is based on the fact that the solutions of second-order elliptic 
differential equations (such as the Schrodinger equation) in all space may be solved by 
confining ourselves to a finite closed subspace. The effect of the remaining space is 
incorporated in the effective Hamiltonian as a surface potential. 

In comparison, the philosophy behind all CPAS may be summarised in the following 
steps. 

(i) We first divide the space into two subspaces I and 11. In I, we treat the potential 
exactly while, in 11, we replace the random potential by an effective periodic energy- 
dependent coherent potential. 
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(ii) We then determine the Green function for this system for different realisations 
of the random potential in I. This Green function averaged over different realisations is 
then equated to the Green function of a system where the effective, coherent potential 
replaces the exact potential in all space. This determines the coherent potential. 

Region I could be a single-muffin-tin potential, a cluster of potentials, or a cluster with 
a modified spherical boundary (Inglesfield 1981) as in figure 5 (see later). Within I ,  
therefore, clustering short-range order or lattice relaxation effects may be incorporated. 
The exact potential V(r) in this region has a random configuration C with appropriate 
probability densities P(V)D( V). 

In region 11, we assume that we know the exact solution 

[-io2 + U(r)]y(r) = Ey(r) .  

[-+V’ + U(r) - E]g(r, r‘, U )  = 6(r  - r’) 

(1.1) 

(1.2) 

From this we construct a Green function g(r, r’, U) satisfying 

and the boundary condition dg/dns = 0 on the surface S between the two regions I and 
11. denotes the derivative normal to the surface S .  Now from equations (1.1) and 
(1.2), using the Green theorem and the boundary conditions on S, we obtain 

If we now introduce the functional inverse k(r, r’, U )  of the Green function defined in 
equation (1.2), we may invert this integral equation 

Let us now introduce the trial wavefunction CP in all space, which takes the value 
y( r )  in I1 and a trial function q( r )  in I ,  with q( r )  = V(r) on S .  If we now vary CP in 
equation (1.1) but still match CP and I/J on S ,  we obtain 

The next step involves the calculation of the energy E as [Jd3rCP’*(r)HCP(r)/ 
Jd3r@.*(r)CP(r)] and using equations (1.3) and (1.4) to replace the terms involving I/J in 
11. This procedure is identical with that of Inglesfield and the reader is referred to that 
work for the algebraic details. A variational minimisation of E with respect to the trial 
function q in I and an evaluation of the kernel k(r, r’ ,  U )  at the exact energy E of the 
total system yields the effective Schrodinger equation 

a 
JnS 

[ - i V 2  + i6 ( r  - rs)  - + U(r)]q(r) + 6(r - rs)  d 2 r s  k(rs, r i ,  U)q(rh) = Eq( r )  

with 
r E  I .  

Note that this effective Schrodinger equation acts on the space I alone. The effect of the 
space I1 appears as thesurfacepotenriuloperatorK(E, U )  = S(r - rs)J d3rk k(rs, rk, U ) .  
The term i6( r  - rs)(d/dns) ensures that the effective Hamiltonian remains Hermitian 
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in region I alone. Usually region I is a small subspace, so that equation (1 S) is a significant 
simplification, provided that we can determine the kernel K ( E ,  U) on the surface S with 
ease. Effectively, we have partitioned the space, and within the tight-binding (or any 
countable basis) approach this is exactly the partition theorem (Kumar et a1 1982) used 
to introduce the cluster coherent potential approximation (CCPA). 

Our basic approximation now involves replacing the random potential U(r)  in I1 
by an energy-dependent coherent potential ~ ( r ,  E )  which is inuariant under lattice 
translations u(r + R ,  E )  = ~ ( r ,  E ) ,  whereR is a lattice vector. Using equation (1.5), we 
obtain the Green function for the whole space 

[EZ - H ( V )  + K ( E ,  u)]G(V,  U ,  E )  = I .  (1.6) 
The self-consistent equation for the coherent potential U is then 

J D(V)P(V)G(r,  r ’ ,  E ,  V ,  U) = G(r ,  r ’ ,  E,  U ,  U )  (1.7) 

with both r ,  r’ in I. This is the basic CCPA equation. The choice of region I incorporates 
the cluster effects. 

The construction of the surface potential involves the calculation of the Green 
function in I1 with the additional boundary condition that its normal derivative vanishes 
on the boundary S .  We shall illustrate this by two examples. 

From equation (1.6), we note that the Hamiltonian H (  V )  in the subspace I is Hermi- 
tian; moreover the ‘surface potential’ K ( E ,  U )  is herglotz provided that the Green 
function g(r,  r ’ ,  U) defined in equation (1.2) is herglotz. This condition is sufficient to 
ensure the herglotz nature of G(V,  U ,  E )  for each realisation of V.  Equation (1.7) then 
ensures that the averaged G(r, r ’ ,  E ,  U ,  U) is also herglotz. In the applications which 
follow, to ensure the herglotz property of the averaged Green function, we have to 
ensure that the Green function in the truncated space I1 is constructed to be herglotz. 
We have done so for the numerical examples involving the coherent jellium. 

1 . I .  The coherent jellium 

This assumes that the coherent potential is independent of r in  11: u(r ,  E )  = u(E). Then 
we have 

where k = [(2m/h2)(u - E)]’/2. 
It is easy to check that the boundary condition is obeyed on S .  On S ,  we have 

ik 
g ( r s ,  r ; ,  U) = - -E W ( j l ,  hi)- YL(P)YL(P’) = 2 g/(krs)YL(P)YL(P’). ( 1 . 9 ~ )  

4JG L hi (krs) L 

(1.9b) 
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For states with s symmetry, 1 = 0 and rn = 0; for the flat potential we have h,(kr,) = 
exp(ikr,)/ikr, so that k,(krs) = (1 - ikrs)/4nr:. This is Inglesfield's result for the s Green 
function for the flat three-dimensional well. 

1.2. The coherent crystal 

In case we wish to represent the region I1 by a crystalline array of coherent muffin-tin 
potentials, we may generalise the Green function expressions given by Faulkner and 
Stocks (1980). Our aim is to generate a Green function whose derivative vanishes at the 
boundary S of region I. In the usual KKR calculations the Green function with this 
boundary condition is usually not encountered. We shall first illustrate this by a simple 
example when region I has a single muffin-tin potential centred at R,. Let Jl(r, E )  and 
H/(r, E )  be the regular and irregular solutions at the origin of the muffin tin potential: 

-(l/r',)(d2/drt)(r,ZI) + [U(r , )  + I ( l +  l)/r: - E]ZI = 0 r,, = r - R , .  

J l ( r ,  E )  smoothly joins ontojl(kr)cT - ikhl(kr) when r > r M ,  the radius of the muffin-tin 
sphere, while H/(r ,  E )  joins smoothly ontoji(kr) for r > r,v. ~ 7 6 ~ ~ '  is the inverse of the 
scattering t-matrix associated with the nth muffin-tin potential. 

TFT,(E) is the path operator T = (c - B)-' where c??, = ~ ; 6 ~ ~ ~ 6 ~ ~ ,  is the inverse t- 
matrix and B??, is the structure factor. The pre-factor Cis determined from the relation 
[d(rgl)/dr],,+ - [d(rgl)/dr],,- = - l /4nr t .  It involves a Wronskian W(J,, Hi) andcan be 
shown to be independent of r ' ,  L and L ' .  

(1.11) 

In case region I contains more than one muffin-tin potential, the boundary may be 
broken up into sections S,, j' = 1 , 2 ,  . . . , p such that all points on Si are near the outer 
muffin-tin potential labelled j .  Now, in general, 

So far our equations have been functional relations. For practical calculations, it is 
convenient to choose a countable basis of representation. This is very similar to the 
procedure followed in molecular chemistry. The choice of our basis set PI(.) is dictated 
by symmetry considerations in a specific problem. Inglesfield, working with flat wells for 
example, chose the s-like functionspi(r) = [sin(k,r)/r]Y,,(r) for the study of s states. Our 
equations then reduce to matrix equations. 

In general, we may represent any operator 
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as a matrix 

f$"' = \\ d r  d r '  (rr')2piL(r)fLLf(r, r')pjL!(r'). 

The effective Hamiltonian operator involves 

hLL,(r ,  Y') = ~ L L ' [ ~ ( Y  - r')/r2][(1/r2) d2 /d r2  + V(r) + 1(l+ l)/r2] 

+ 6LL,[S(r - ~ , ) / 2 ~ z ] d / d r  

x k L L '  ( y ,  7') = [ 6 ( r  - y,)/yzlkLL'(r,). 
Equation (1.6) then reduces to 

513 

(1.13) 

(1.14) 

x (hi,' + k f '  - ES&' 11 )G"' 11 = Sij6LL, (1.15) 

i.e. G = (h + k - ES)-' where S is the overlap matrix of the basis set. 
The density of states is given by 

(1.16) 

The charge density is given by 

XXXX P iL (YIPjL' ( ~ ) Y L  ( r )  YL/ ( r ' )  [ - Im ( I E F  d E  GkL' 1 1. (1.17) 
ijLL' 

The CPA equation reduces to a set of equations 

I dVP(V)GiL'(V,  U) = GGL'(u, U). (1.18) 

The coherent potential u(r,  E )  is characterised by the effective inverse scattering matrix 
cf;"'(E) which can be obtained from the above equation. P(V) is the distribution of the 
potentials within region I. 

2. Examples and results 

We shall illustrate our formalism by simple examples. In the first example, we take 
V(r) = -VA or -VB with probability xA or xB in region I and zero outside, i.e. a flat 
potential. In region 11, we have a coherent jellium u(r, E )  = u(E). 

We shall first study the s states in this flat potential. Our basis functions are then 
[sin(nr)]/r. In this basis, 

h,, = (n2 /2  - V)S,, + i sin(nr,) {m cos(mr,) - [sin(mr,)]/r,} 

k,, = sin(nr,) sin(mr,) (1 - ikr,)/r, k = [2(E - V)]''' 

S,, = i[i{sin[(n - m)r,]}/(n - m) - {sin[(n + m)r,]}/(n + m)]. (2.1) 
The CPA equations are given by 

X A G n m ( E ,  VA, u n m )  -k XBGnm(E, VB, unm) = Gfim(E, U ,  unm). (2.2) 
The number of members in the basis set (PnL(r)} {n = 1 , 2 , .  . . , N }  varies from 

problem to problem. In figure l(a) we show the densities of states for VA = -1.0 au, 
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1.2 l.jl_ 

0.2 

- - - - - - - - -  - -  --. --  
O ' & L  0 2.0 3 . 5  Energy 5 0  6 . 5  8 .O 

Figure 1. (a)  Densities of states for V ,  = -1.0 au, V ,  = -5.0 au, r, = 2 au and x, = x ,  = 
0.5: ---, single-member basis; -, eight-member basis. ( b )  Difference in the densities of 
states for a four-member basis (---) calculation and an eight-member basis calculation 
(-) for the same parameters as above with x ,  = 0.9 and x B  = 0.1 at higher energies. 

VB = -5.0 au, r, = 2 au, X, = xB = 0.5. The broken curve is obtained for n = 1 and the 
full curve for n = 8. The essential qualitative features are already reproduced for n = 1, 
whereas increasing n leads to shifts in the peaks as well as in the broadening. Essential 
differences occur at higher energies. Figure l (b)  shows a result for the same potentials 
but for concentrationx, = 0.9 andxB = 0.1 at higher-energy regimes for n = 4 (broken 
curve) and n = 8 (full curve). The two differ very little except at very high energies and 
even then the ratio of the difference to the average peak height is only about 4%.  

To illustrate the effects of concentration and I VA - VB/ (the two parameters charac- 
terising disordered alloys), we show in figure 2 three sets of alloys for n = 1 (broken 
curves) and n = 8 (full curves) and xA = 0.3,0.5 and 0.7. 

Figure 2(a) is for VB = -1.0 au and VA = -0.5 au. This is the overlapping-band 
weak-disorder case. The peaks corresponding to the constituents overlap to form a broad 
structure; the relative weights of each constituent are reflected in the concentrations. 

Figure 2(b) is for VB = -5.0au and V,  = -1.Oau. This is the split-band strong- 
scattering regime. Each constituent contributes distinguishable structures whose weights 
again are reflected in the concentrations. 

Figure 2(c) is for VB = -5.0 au and V,  = -0.5 au andx, = 0.1 and 0.9. This is the 
so-called impurity band strong-scattering regime. It is here that, from our experience 
with tight-binding calculations, cluster effects (not reflected in the CPA calculation here) 
are expected to dominate. 

We shall now look at the density of states for d-like states in the flat potential. The 
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I l a ’  

c 
0 1  

I 
2.5 

01 I I I I 
-1.50 0 75 3 00 

Energy 

Figure 2. Densities of states for s states in a flat potential binary alloy with (a )  V ,  = - 1 .0 au 
and V ,  = -0.5 au, ( b )  V ,  = -5.0au and V ,  = -1.Oau and (c) V ,  = -5.0 au and V ,  = 
-0.5 au. For (a)  and (b):  --- x ,  = 0.3; xA = 0.5; - xA = 0.7; for (c): --- x ,  = 
0.1;----~, = 0.9. 

basis states are now [(3/p3 - l / p )  sinp - (3/p2) cosp]Y,,(r) where p = nr. We shall 
deal only with single-member basis with n = 1. The d states are far less extended than 
the s states and the qualitative results are better reflected in the simple n = 1 case than 
for the s-like states. The representation of the Hamiltonian is then 

h,, = (n2/2 - V)S,, + 8{[2/nr, + 3 / ( ~ , ) ~  - 2 7 / ( ~ , ) ~ ]  sin2(nrs)]/n + [l - 6 / ( n ~ ~ ) ~  

+ ~ / ( n r , ) ~ ]  [sin(2nrS)]/2n + [3/nr, + 9/(nrs)3][cos2(nr,)]/n} 

s,, = (1/2n2){r, - [sin(2nrS)]/2n} + 4[cos(2nrs)]/n6r: - ~[cos(2nr,)]/n4r, 

- [3 sin(2nr,)]/n5r~ - 3/[2n4r, - 3/2n6r:] 

k,, = $[(9/n6r: + l /n2r ,  - 6/n4r3) sin2(nr,) 

+ [9 cos2(nr,)]/n4r$ - (3/n2)(3/n3rf - I/nri) sin(2nrS)] 

X [(9 - 9ikr, - 4k2r: + ik3r:)/(3 - 3ikr, - k’r;)]. (2.3) 
Figures 3(a)-3(c) shows the d-state densityof states for thecorresponding parameters 

of the s states shown in the earlier figures. The structures are sharper. This is to be 
expected since the d states fall away more sharply from the well centres than do the s 
states. The qualitative features are well reproduced by the single-member basis. 

To study the effect of the well shape, we next carry out a similar calculation for a 
l / r  type of potential. We shall look at the s-like states in the l / r  potential. The basis is 
made up of functions such as 2n3/2 exp( -nr). Again we shall first look at a basis with 
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Figure 3. Densities of states for the d states in a flat potential binary alloy with the same 
parameters as the corresponding parts in figure 2. 

Energy 

Figure 4. Densities of states for the s states in a binary alloy with potentials of the form 
V(r) = V/r, with Vtaking thevalues V, and VB with probabilitiesx, andxB.  The parameters 
are the same as in the corresponding parts in figures 2 and 3. 
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only n = 1. The Hamiltonian representation is given by 

h,, = -(n2/2)S, ,  + 4(n - V)n3{[-( l /2n) '  - r, /n] exp(-2nrS) 

+ ( 1 / 2 ~ ~ ) ~ }  - 2n4r$ exp(-2nr,) 

k,,, = (n3r,/2) exp( -2nrJ (I - ikr,) 

S,, = 4n3[(-r:/2n - 2r,/2n2 - 2/2n3) exp(-2nr,) + 2/2n3]. (2.4) 
Figure 4 shows the effect of the well shape. We have taken the two potentials to be 

V(r)  = V/r where Vcan be either V,  or VB. The qualitative features remain unchanged 
from the flat potentials, although the quantitative change in the location and the widths 
of the structures are apparent. The structures are sharper than the flat potentials, which 
is a reflection of the fact that the flat well s states increase as 1/r whereas the l / r  potential 
wavefunction decays exponentially. The density of states also correspondingly decay at 
higher energies, and the peak widths are narrower. 

The formalism is ideally suited to extension of the CCPA. We may ernbed a cluster of 
muffin-tin potentials within the spherical region I (as in figure 5). The matrix rep- 
resentation of the Hamiltonian will then be in terms of a basis centred at each of the 
wells. This is reminiscent of the type of approach used in molecular electronic structure 
calculations with an atomic-like basis. The calculations will then involve multi-centre 
integrals. Apart from this complication, which has already been dealt with in great detail 
in molecular calculations, the rest of the procedure follows as described earlier. Work 
on the CCPA using the embedding method is in progress and the subsequent calculation 
will be reported. 

Appendix 

By definition the functional inverse of the Green function is 

1 d3J' k(r,  r")g(#', r ' )  = 63(r - r ' ) .  

Expanding k(r ,  r") and S3(r - r')  in the forms k(r ,  r") = XLk,(r, #')YL(r)YL(r") and 
S3(r - r')  = ( 1 / r 2 ) S ( r  - r')XLVL,(r)YL(r'), substituting into the above equations and 
equating coefficients of YL(r)YL(r') on either side, we get 

1 
r2 

1 dr" r"2k,(r,  #')gI(r'', r ' )  = - S ( r  - r ' ) .  

Figure 5 .  A schematic diagram showing a cluster of spherically symmetric wells with a 
modified spherical boundary. 
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Note from the form of k that k l (r ,  i') = 8(J' - rs )k(r ,  rs) so that, i f  we put both r and 
r' = rS ,  we obtain from the above 

k d r s )  = (1/rs)4&(rs) .  
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